ANALYSIS OF THE INFLUENCE EXERTED BY PHYSICOGEOMETRIC PARAMETERS
ON THE TEMPERATURE FIELD OF AN OBJECT
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A method is proposed for studying the effect of various parameters in complex
objects on the thermal regime within these objects. A study was also conduct-
ed into the error of this method.

In [1, 2] we find a study of the procedures involved in the design of thermostable op-
tical systems. It is demonstrated that such design operations involve three stages: selec-
tion of the basic optical system, the development of structural components, and the calcula-
tion also of temperature fields and thermooptical aberrations. The relationship betveen the
output characteristics of an instrument, relative to slight deviations in the initial para-
meters [3], is ordinarily studied in each of these stages.*

In the initial stage, such an analysis makes it possible to justify such an optical
system, capable of operation even when some of the parameters of the system, during cpera-
tion, fail to meet specifications as a consequence of fabrication imprecision or as z result
of various occurrences (thermal, mechanical, etc.).

In the second stage, the analysis of the influence exerted by structural parameters on
the temperature field allows us to isolate those which govern the thermal regime of the in-
strument. During the design stage, any alteration of these parameters makes it possible to
affect the thermal regime in any required direction and to optimize the design.

In the third stage, we evaluate the reliability of the results obtained in the calcula-
tion of the temperature fields, we determine the need to refine any of the original informa-
tion, we take a look at the stability of the thermal regime in the instrument being designed,
and we choose the regimes with which to carry out the thermal tests, etc.

In order to solve these problems, we usually find an analytical relationship betveen the
temperature of any region and the parameters of the object. Then, by means of differentia-
tion over any given parameter, we determine the influence of these parameters on the thermal
regime [4-8]. It is not always possible to apply such an approach, because of the absence
of analytical relationships or because of limitations in the area of their application.

In the present study we propose a numerical-analytical method that is based on tae con-
cept of an influence coefficient, and this method is intended for complex objects. The temp-
erature fields of objects are calculated in several stages, with various levels of de:ail,
involving the utilization of a step-by-step simulation method [9].

In the first stage we determine the average-surface or average-volumetric temperature
regions. The mathematical formulation of the problem involves a system of algebraic (for
the steady-state thermal regime):
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or ordinary differential (for the nonsteady regime) equations [10]:

*In optics and in electrical engineering, analysis of influence is also referred to as sen-
sitivity analysis.
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Equations (1) and (2) have been compiled on the basis of the law of conservation of energy
and taken into consideration the mutual thermal influence of N bodies in the system with en-
ergy sources P;, temperature sources t; and ty, and conductivity sources 035 between the bod-
ies i and j. o

In the subsequent stages, using information about the average temperatures of the bod-
ies, we find the value of the average surface temperature or the flow of heat from the sur-
face of a given body. Having this information at hand, we are able to determine the temper-
ature distribution in various regions. The mathematical formulation of this problem is in
the form of a partial differential equation [11].

Thus, the problem of studying the influence exerted by parameters on the temperature
field of a complex object breaks down into two parts:

analysis of the means temperature;
analysis of the temperature distribution in the regions.

Let us examine the first problem. Let there be a system of N bodies. The average temp-
eratures tj (i=1, 2, ..., N) of its regions are functions of the m-parameters X5 i.e.

=t ooy Xm), £=1, .., N. (3)

Applying a Taylor series to (3) and retaining here only the first terms, we obtain:

m
t, =t + At; =t?+2ﬁ"i(x1, ves Xm) Ax;. (4)
i an

The coefficients with Axj characterize the level of influence exerted by the parameter x; on
the temperature tj. We will refer to these as coefficients of influence and we denote

kg =0t; (%y, ..., X)/0x;. (5)
With consideration of (5) we rewrite (4) to the form

o= ) + Mty = 10 4 Y by Ax;. (6)
i

The change in the temperature of the regions, caused by the deviation of the parameters Ax:
(j =1, ..., m), will be characterized as a discrepancy function € = {g;, ..., en}{12]. The
components of the discrepancy vector ¢i are determined from system of equations (1) and (2).

For the steady-state regime

. N -
ei___pi_zq”(ti.—tj), i=1, ..N, (7)
]

and for the nonsteady regime

. "
& = P,—Cydtjdv— N oyt,—1y), i=1, ..., N. (8)
j,

Let us apply a Taylor series expansion to the €; components of the discrepancy vector and
let us limit ourselves only to the first terms:

N
g =g;(f) =g, (% I E O¢;/0t; At; )
7

or in vector form:

e(f) = e {1 + JAL, ‘ (10)
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TABLE 1. 1Influence Factors for Various Parameters, Applicable to the
Temperature i-th Region

Paramater Notation Expression of influ-
ence coefficient

Conductivity between
j-th and &-th bodies ojg (byj = bip)(ty — t4)

Conductivity from
j-th body to the

medium O bij(tm - tj)
Heat flow Pj bij
Heat capacity Cy [(dtj)/dr]bij
Temperature of the N
medium tn 2 bij"’jm
7

where the Jacobi matrix J has the form:

0e,/04,, ..., Oe,/0ty
7= . (1D

OeyiOty, ..., Oey/Oty
For linear systems the Jacobi matrix coincides with the matrix of thermal conductivi-
ties.

Since t° represents the solution of system (1) or (2) when Ax = 0, then £(t%) = 0. In
this case

- J-%
At =Je (D), (12)
where J™! is the inverse Jacobi matrix.
With consideration of (12), the expression for the temperature assumes the form
(X 4+ Ax) = 0L At = 2 J 25 (f) (13)
or for the i-th equation
N
=1+ Y baon(t) (14)
Rk
where bii is an element of the inverse Jacobi matrix.
Differentiating (14) with respect to Xj, we find
N N
—a—tir_—zbih aEk +2"Lblk Ek‘ (15>
ax,- B 6xj % ax;

Assuming the Jacobi matrix to be independent of the parameter xj (i.e., Bbik/SXj =0),
from (15) we obtain the expression for the influence coefficients

ot; N Jgy, (16)
kij = ——= ¥ .
! 6x,- ; R ij

Let us examine the determination of the coefficients of influence on the example of
thermal conductivity. The derivatives of the components ey and ey with respect to conducti-
vity ojp in accordance with (7) or (8) are equal to:

Oy _Olonlh—tl _ 4, _ 4 (17)
doy dop

08 Ooa(ly—t) _ t—4.

doj dojy
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Let us substitute (17) into (16):

ky(oq) == by (G — 1) + by (85— 1) = (byy — by) (i —£5)-

Expressions for the coefficients of influence with respect to such other parameters as are
shown in Table 1 have been derived in analogous fashion.

Using the formulas presented in Table 1 and the rule for differentiation of complex
functions, we will write the coefficients of influence for other parameters. For example,
for the angular coefficient @j

O, _ 08, 0oy _ O Olereq 9 Sif (ti 1))
Oe; oy g  doy 09y
Let us now turn to the solution of the second problem. We will examine the analysis

of the influence exerted by the parameters on the distribution of temperature in individual
regions.

= (bij~ba) (i — 1) €0y Si f (s, 1)

The temperature distribution is a function of the mean-surface temperatures tgy (k = 1,
.» N) through the regions of the object, as well as of the physicogdometric parameters
X3 (=1, ..., n):
ti =ti(t31, veey taN! Xis oees xn). (18)

Expanding (18) into a Taylor series and retaining the first terms in the expansion, we ob-
tain

n N
Aty = 3 0t/0x; Axy + }k: Oty/0t g, D g (19)
7

Substitution into (19) of the expression for Atgy, derived from (6), gives us

N N m
ot a4 (20)
At == —L Ax " : ki Ax
» ’fax, j+h0t.k,zjj
or
g ot < o
At = d ki Ax, (21)
i ,z(ax1+ jgﬁt.h) !
or
M
At,=2rqu,,
i
where N
dt
Iy = —— .
u 6x, + » i ;at,k (22)

In (22) rj; represents the influence coefficient of the j-th parameter on the temperature
distribution in the i-th region.

The partial derivative 9t;/0x; and dt;/dtgk are found analytically or numerically, de-
pending on the method used to analyze the temperature distribution in the regions.

The error in the calculation of the influence coefficients and the deviations in temp-
eration are determined by the remaining terms of Taylor series expansions (4), (9), and (19),
and it is also based on the assumption that the Jacobi matrix is independent of the parame-
ter xj.

3

. According to the analysis, for linear systems [o # o(t)] the error in the calculation
of the influence coefficients and the temperature deviations is equal to zero for the follow-
ing parameters: the power P of heat release, the temperature tp of the medium, and the heat
capacity C. For thermal conductivities the analysis of the error is accomplished in statis-
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tical fashion. The matrix of the conductivities and the power vector are specified in ran-
dom fashion, as the product of certain nominal values of o, and P, multiplied by a random
number worked out by a pseudorandom-number selector in the interval from zero to unity in
accordance with a uniform distribution law. The temperature deviations were determined num-
erically as well in the proposed method. In the latter case, the temperature was calculated
twice: both in the presence of and in the absence of deviations in the parameters, while
the deviations in temperature of At; for the i-th region were found as the difference be-
tween the derived temperature values. The relative error &4 was determined from the follow-
ing formula:

ai = mOd (At,— Ati)/Ati. (23)
With the results from 1000 selections, we obtained reliable intervals for the relative error
of the method.

The analysis showed that the indicated error does not depend on the nominal values of
o, and P, that have been chosen (this can be demonstrated analytically) and it is determined
by the number of equations and by the magnitude of the parameter deviations. For linear sys-
tems of 3, 5, 7, and 10 equations, given a l107-parameter deviation, the relative error
amounted, respectively, to 9, 6.5, 5, 4%Z. The dependence on the magnitude of the desiations
is directly proportional.

For nonlinear systems {we examined objects whose nonlinearity was determined by radia-
tive heat exchange) the error is larger and amounts to 13 and 5%, respectively, for 3 and
10 equations.

The approach covered here was used to analyze influence in the design of a number of
optical-electronic instruments® and made it possible to determine both structural and regime
parameters which ensured a normal thermal regime for these instruments. Among such paramet-
ers we can cite the following: the power of the heater for the objective thermostating sys-
tem, the area and mass of the radiator in the radiation-receiver cooling system, the paramet-
ers of the mounting element (brackets, fittings, etc.).

The area in which this method can be utilized is not limited tc optical and opticoelec-
tronic instruments. It can be used successfully in the design of a variety of radioelectron-
ic equipment (multiunit racks, power-supply units, and others) and also allows us to develop
certain recommendations, namely: with respect to the positioning of individual units in
racks, with respect to the determination of the required rate of air flow through the units,
for the selection of radiators to cool elements in the power-supply units, etc.

Experience with the utilization of this approach for purposes of analyzing the influ-
ence of the parameters on the thermal regime of variously designated objects showed that it
allows us to eliminate the need to perform a multitudinous variety of calculations, thereby
saving computer time and reducing the time required for the development. These coefficients
of influence are determined without additional expenditure of computer time (the inverse Ja-
cobi matrix required for this purpose was found in the calculation of the temperatures by
the Newton—Rafson method [13].

NOTATION

tio, Atj, the i-th component of the temperature vector, calculated for nominal values
of the parameters and of the correction-factor vector; v, time; e,.og, reduction emiss .vity;
S;, area of j-th radiation surface; f(tj, tg), the function relating the temperatures tj and
ty in the expression for radiative conductivity.
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STUDYING THE TEMPERATURE FIELD IN THE RECORDING AND REPRODUCTION
OF INFORMATION BY MEANS OF FOCUSED RADIATION

Yu. M. Kolyano, A, V. Irlin, B. V., Protsyuk, UDC 536.12:539.377
B. A. Drapkin, and V. G. Tsukanov

The functions of an instantaneous spot source of heat acting on the boundary
of layer separation have been constructed for a two-layer plate. The tempera-
ture field generated by a moving normally distributed source of radiation is
studied in the recording and reproduction of information.

The most important component in the development of optical disk recording devices, as well

as in the reproduction and storage of information is the study of the process involved in
the propagation of heat generated in an active layer applied to a substrate transparent to
optical radiation and focused with brief pulsed radiation (the thickness of the substrate
considerable exceeds the thickness of the active layer). Under real conditions, since the
three-dimensional distribution of radiation intensity is described by a complex law [1], it
is a good idea to make it as simple as possible. In this connection, of practical interest
is an examination of the problem pertaining to the heating of component parts in three-dimen-
sional formulation from the standpoint of the heat sources which are effective at the point
at which the layers are joined.

The solution of these problems for a two-layer plate can be found by means of the func-
tions G (r, Tos @y Qo s 2, 1), satisfying the following equation, with discontinuous and sin-
gular coefficients:

A \OG 1 1 1 a0G
— 5 =¥ 2 Y | e ——— _— il 1
st (1= ) de—a[ o (pmg) sema [5h 4 @
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